
An Object Storage Model for the Truffle
Language Implementation Framework

Andreas Wöß∗ Christian Wirth† Daniele Bonetta† Chris Seaton† Christian Humer∗

Hanspeter Mössenböck∗

∗Institute for System Software, Johannes Kepler University Linz, Austria †Oracle Labs
{woess, christian.humer, moessenboeck}@ssw.jku.at {christian.wirth, daniele.bonetta, chris.seaton}@oracle.com

Abstract
Truffle is a Java-based framework for developing high-performance
language runtimes. Language implementers aiming at developing
new runtimes have to design all the runtime mechanisms for man-
aging dynamically typed objects from scratch. This not only leads
to potential code duplication, but also impacts the actual time
needed to develop a fully-fledged runtime.

In this paper we address this issue by introducing a common
object storage model (OSM) for Truffle that can be used by lan-
guage implementers to develop new runtimes. The OSM is generic,
language-agnostic, and portable, as it can be used to implement
a great variety of dynamic languages. It is extensible, featuring
built-in support for custom extension mechanisms. It is also high-
performance, as it is designed to benefit from the optimizing com-
piler in the Truffle framework. Our initial evaluation indicates that
the Truffle OSM can be used to implement high-performance lan-
guage runtimes, with no performance overhead when compared to
language-specific solutions.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Run-time environments, Optimization

General Terms Algorithms, Languages, Performance

Keywords Dynamic languages, virtual machine, language imple-
mentation, optimization, Java, JavaScript, Ruby, Truffle

1. Introduction
Truffle [25] is an open-source framework for the implementation
of high-performance language runtimes using Java and the Java
virtual machine (JVM). Using Truffle, a language runtime can be
developed just by implementing an AST interpreter. More pre-
cisely, the AST interpreter is the language runtime. The AST (and
the interpreter which is represented by the execute methods of the
AST nodes) can be automatically optimized by Truffle and can fi-
nally be compiled into very efficient machine code. Thanks to this
feature, Truffle can be used conveniently for developing the run-
time support for dynamically typed languages. As of today, sev-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PPPJ ’14, September 23–26 2014, Cracow, Poland.
Copyright c© 2014 ACM 978-1-4503-2926-2/14/09. . . $15.00.
http://dx.doi.org/10.1145/2647508.2647517

eral Truffle-based implementations for dynamic languages exist,
including JavaScript, Ruby, Python, Smalltalk, and R. All of the
existing implementations offer very competitive performance when
compared to other state-of-the-art implementations, and have the
notable characteristics of being developed in pure Java (in contrast
to native runtimes that are usually written in C/C++).

To further sustain and widen the adoption of Truffle as a com-
mon Java-based platform for language implementation, Truffle of-
fers a number of shared APIs that language implementers can use
to optimize the AST interpreter in order to produce even more opti-
mized machine code. In order to obtain high performance, however,
there has still been one core component that the Truffle platform
did not offer to language implementers, and that had to be imple-
mented manually. This core component is the object storage model,
that is, the runtime support for implementing dynamic objects. In-
deed, language implementers relying on the Truffle platform have
to implement their own language-specific model for representing
objects, and then have to optimize the language runtime accord-
ingly in order to optimize the AST interpreter for the characteristics
of a certain language’s object model. Requiring language imple-
menters to develop the object storage model of their new language
from scratch is not only a waste of resources, but could also lead to
questionable software engineering practices such as code duplica-
tion and non-modular design.

With the goal of solving the above limitation of the Truf-
fle framework and with the aim of supporting language devel-
opers with a richer shared infrastructure, this paper introduces a
new, language-independent, object storage model (OSM) for Truf-
fle. The new object storage model represents a notable progress
in the Truffle framework—as well as in the domain of similar
frameworks—as it provides language implementers with a com-
mon shared component that can be used to obtain support for new
language runtimes having the following properties:

• Generality. The Truffle OSM can be used by language imple-
menters as the basis for developing the object model of their
new or existing guest languages. Its design allows common
mechanisms (such as dynamic object resizing and dynamic
type dispatch) to be reused across language runtimes, provid-
ing developers with a set of built-in optimizations. Thanks to
this property, the Truffle-based language runtimes of Ruby and
JavaScript have been implemented sharing the same type spe-
cialization and inline caching mechanisms.

• Extensibility. The Truffle OSM is extensible. Languages re-
quiring custom operations on object instances (e.g., on prox-
ies [23]) can extend the OSM by simply adding the new fea-
ture to the specific language runtime. The extension mechanism

JavaScript Runtime

Truffle Runtime (API, OSM)

JavaScript Program

Java Virtual Machine

Ruby Runtime

Ruby Program

written in Java

written in C++, Java

written in guest language

written in Java

Figure 1: System structure of guest language implementations on
top of the Truffle platform

is designed to take advantage of Truffle-based self-optimizing
AST interpreters.

• High performance. Not only can the Truffle OSM be shared
across multiple language runtimes, but it also offers them the
same competitive performance characteristics.

The Truffle OSM is designed to be a core runtime component
for any new language runtime based on the Truffle platform, offer-
ing automatic built-in support for runtime mechanisms such as type
specialization and polymorphic inline caches.

This paper is structured as follows. In the next section we give
background information on the Truffle framework. Section 3 intro-
duces the design and the main characteristics of the Truffle OSM.
Section 4 presents the implementation details, while Section 5
presents a performance evaluation. Section 6 presents related work,
while Sections 7 and 8 conclude this paper.

2. Background

An object model defines the properties of objects in a specific
programming language as well as the semantics of operations on
them. Usually, definitions of a language’s object model (e.g., the
Java object model [10]) include a formalization of all the operations
that can be performed on object instances along with the formal se-
mantics for such operations with respect to other language aspects
(e.g., the Java memory model [15]).

We use the term object storage model (OSM) to describe an
abstract language-agnostic object model on top of which concrete
language-specific object models can be built. An OSM defines how
objects are represented in the host language (i.e., the language in
which the OSM is implemented, e.g., Java) and provides basic
concepts for emulating object models of guest languages (i.e.,
languages that are implemented on top of the OSM, e.g., Ruby).
Note that we are concerned only about storage within memory.

Moreover, the OSM features built-in support for common op-
timization techniques that can be used to build efficient language
implementations. A naive, but often inefficient, approach would be
to represent a dynamically-typed object as a hash table.

2.1 The Truffle Framework Overview
Truffle [25] is a language implementation framework entirely writ-
ten in Java. A language runtime implemented in Truffle (called
the guest language runtime) is expressed as an abstract syntax tree
(AST) interpreter implemented in Java (which is called the host
language). Figure 1 shows an overview of the separate layers in
the Truffle platform. As with standard AST interpreters, the AST
is evaluated by recursively executing its nodes in post-order traver-
sal. In contrast to standard AST interpreters, however, Truffle ASTs
can self-optimize: based on profiling feedback gathered at run time,
AST nodes can speculatively replace themselves with specialized
variants that can eventually be compiled into highly optimized ma-

StorageObject
«object header»

shape reference

object storage area

primitive storage area

Shape
{…}

(a) without extension arrays

shape reference

object storage area

primitive storage area

StorageObject
«object header»

object extension array
primitive extension array

len
[]

…

len
[]

…

Shape
{…}

(b) with extension arrays

Figure 2: In-memory layout of a storage object

chine code [24]. For instance, a node can speculate on the type
of arguments or on the size of data structures, ignoring unlikely
and potentially costly corner cases (in terms of generated machine
code). If the speculation turns out to be wrong later on, nodes can
again rewrite themselves to more generic versions, providing all the
necessary functionality for the cases observed.

Truffle AST interpreters are standard Java applications, and can
therefore be executed by any Java Virtual Machine (e.g., by the Or-
acle HotSpot VM). When executed on the Graal VM [18], however,
the Truffle AST can be further optimized and compiled in order
to produce even more efficient machine code. More precisely, the
Graal just-in-time (JIT) compiler [5, 21] has special knowledge of
the Truffle AST structure, and can optimize the execution speed of
the guest language program by means of partial evaluation of the
AST [25]. Partial evaluation means that when an AST reaches a sta-
ble state, the interpreter dispatch can be precomputed and the resid-
ual code transformed into a single compilation unit which Graal
can compile into highly optimized machine code. An AST is con-
sidered stable when it did not change for a predefined amount of
executions. In order to guarantee that all AST nodes can be com-
piled, every node must stabilize eventually. Therefore, the number
of possible rewrites per node must be finite. When an assumption
is invalidated during execution of the machine code, the machine
code is deoptimized [13], i.e., the code is discarded and execution
is continued in the interpreter. This allows the AST to re-specialize
to new run-time feedback and later to be compiled to new machine
code again.

3. The Truffle Object Storage Model
The Truffle OSM maps guest-language object instances to storage
objects that store its data in the form of properties.

For example, consider the following JavaScript code fragment:
object = { day: 23, month: "September" };

The variable object is assigned a newly created Truffle object with
two properties, day and month, that are assigned integer and string
values, respectively.

3.1 Object Layout
Objects in our model consist of a variable number of properties,
each with a name, a value, and a set of attributes. Furthermore, ob-
jects are self-describing and have a fixed number of operations that
define their behavior. In the class-based object model of Java, ob-
ject instances would only contain values and references as well as
a pointer to a shared class descriptor that describes the format and
the behavior of the object. In contrast, in a dynamic object model,
metadata is mutable and associated with the object itself. In order
not to waste space with duplicate metadata and to be able to opti-
mize object accesses, we take an approach that roughly resembles
the object model of SELF [2], but at the same time is implemented

on top of the Java object model with a fixed object size. An object
consists of two separate parts: the object storage, containing per-
instance data, and the shape, which provides a mapping of member
names to locations in the object storage (similar to a Java class).

Every object created using this object storage model is an in-
stance of a so-called storage class, a Java class that acts as a con-
tainer for per-instance data. A storage class extends the common
base class StorageObject. This class has a reference to a shape
object that describes the current format and behavior of the object
(note that the shape of an object can change at run time). Figure 2
shows how an object is structured in memory. Data is split into
two separate storage areas, one for object references (managed by
the garbage collector) and one for primitive values. Since the stor-
age class has a fixed size, the object model can allocate any ad-
ditional properties in an optional extension array which is resized
as needed. There can be up to two extension arrays, one for ob-
jects and one for primitive values. The references to those arrays
are stored in the object storage area.

A shape maps property names to storage locations and sets of
attributes. The location specifies the exact memory location where
the value of the property is stored, either relative to the storage
object or absolute (like with static fields in Java). A shape fulfills
the same task as a Java class of expressing the metadata of a storage
object. However, in contrast to the immutable class pointer, an
object’s shape field can change over time. Shapes themselves and
all their accessible data are immutable. Immutability allows us to
compare shapes very efficiently using an identity comparison. Any
change to the property collection results in a new shape. Finally,
every shape has a mutable data structure called the transition map
that is used to quickly find existing successor shapes that were
derived from this one by property changes (see Section 3.5).

3.2 Operations
Any interaction with Truffle objects—rather than accessing data
directly—goes through a set of operations defined by the language
runtime. By default, OSM-managed objects offer the following op-
erations for accessing properties. A guest language can add opera-
tions by combining existing ones or adding new operations. In the
following we present the operations predefined in the OSM and
give JavaScript code examples in which these are used.

• get(object, key)
Gets the value of the property key or null if no such property
exists. This operation is used when reading a named property
of an object (e.g., object.key).

• has(object, key)
Checks if the object has a property key (e.g., ’key’ in object).

• set(object, key, value)
Sets the value of the property key or creates a new one with the
name key and default attributes (e.g., object.key = value).

• define(object, key, value, attributes)
Defines a new property of name key with the given value and
attributes. If the property already exists, the operation fails.

• delete(object, key)
Deletes a property if it exists (e.g., delete object.key).

• getSize(object)
Gets the number of properties defined in the object.

• getAttr(object, key)
Gets the attributes of the property key. If no such property exists
the operation fails.

• changeAttr(object, key, attributes)
Changes the attributes of the property key. If no such property
exists the operation fails.

predecessor shape

Shape
«object header»

properties

transitions
shared data

allocator state

operations

used object area

Allocator
«object header»

object array capacity
used object array

used primitive array
primitive array capacity

used primitive area

layout description

shape reference

object
storage area

primitive
storage area

StorageObject
«object header»

Property
«object header»

key
attributes
location

len
[]

len
[]

Transition
«object header»

transition type
property

successor shape

Figure 3: Components of the Truffle OSM

• getKeys(object, filterCallback)
Gets a list of keys defined in the object, filtering on a given
boolean predicate (e.g., for (var key in object) {}).

• getValues(object, filterCallback)
Gets a list of values defined in the object, filtering on a given
boolean predicate.

Language implementations can override the standard operations
and can add custom operations. Overriding an operation also al-
lows to change what happens if an operation fails; by default, an
exception is thrown. Each operation is defined by a method that ex-
ecutes the operation without any argument specialization and by a
corresponding Truffle node that specializes the operation based on
the provided arguments so that repeated executions become faster.
This is achieved using a polymorphic inline cache, as described in
Section 4.4.

3.3 Components of the Truffle OSM
Figure 3 gives an overview of the main components of the Truf-
fle OSM.

Storage Class: a Java class extending the class StorageObject
(see Figure 6). Every storage class contains a number of storage
fields automatically managed by the OSM as well as a field
pointing to the object’s metadata stored in the shape. The fields
are used to store the data of the guest-language object.

Shape: a sharable description of the object’s format and properties.
The shape contains all the metadata of a Truffle OSM object.

Property: describes a property by its identifier, its location, and its
attributes. Depending on what attributes are set, operations may
behave differently. The OSM provides the predefined attribute
hidden, which indicates that the property is injected by the
language implementation and shall not be visible to guest-
language programs. Others can be defined by the language
implementation.

Allocator: The allocator is used to create storage locations for
new members. It maintains information about the size of the
extension arrays and which parts of the storage areas are in use.

Layout: every storage class is assigned a layout description upon
its first use that provides information about its available fields,
the allocation strategy, and enabled OSM features. The allocator
uses this information to lay out storage locations in the available
storage areas.

Location: defines the storage location of a property (see the next
section). It can reference one or more in-object fields, one or
more array indices in a storage extension array or can contain
a constant value. Additionally, the location constrains the type
of the storage location and whether it can only be set once (cf.
final fields in Java).

Operations: a method table of operations applicable to the object.
Language implementers can add or override these operations
to contribute new features. Operations are described in Sec-
tion 3.2.

Transition: when a property is added to an object or removed from
it, the shape of the object changes, which is described by a
transition. The result of a transition is a successor shape. Every
shape has a transition map that links a shape to its successor
shapes. Transitions are described in more detail in Section 3.5.

Shared Data: a special storage area in the shape that can be used
by the language implementation to store additional metadata in
the shape. This data is inherited by successor shapes and thus
preserved across shape transitions. For instance, it can be used
to share a class object between multiple shapes that belong to a
common guest-language class.

3.4 Storage locations
We distinguish the following types of storage locations:

• Object field location: denotes an instance field of the storage
object that is used to store an object reference. Additionally, the
location holds a lower bound Java type of the referenced object,
and whether it is guaranteed not to be null.

• Primitive field location: denotes one or more primitive in-
stance fields of a Truffle object used to store a value of the
primitive type attached to the location. If the value spans mul-
tiple fields, they must be consecutive in memory and properly
aligned (see Section 4.3).

• Object extension array location: denotes an element of an
Object[] array, loaded from an object field location. The type
information is the same as with object field locations.

• Primitive extension array location: like a primitive field lo-
cation but instead denotes a segment of an int[] array, loaded
from an object field location. As with primitive field locations,
the elements must be consecutive and properly aligned.

• Static location: an untyped location that itself contains a value.
This type of locations can be used to store constant values
directly in the shape.

Additionally, all locations can be equipped with Java final seman-
tics as well as with volatile semantics.

3.5 Shape Transitions
The set of shapes is organized as a tree where nodes represent
shapes and edges represent shape transitions. The transitions table
is used to lookup successor shapes and to ensure that equally-
structured objects are always assigned the same shape. The order
in which properties are inserted is part of the structure. The root
of the tree is the empty shape, i.e., the initial shape of an object
without any properties. Using shape transitions, two objects with
the same properties can eventually end up having the same shape.

Figure 4 shows some example JavaScript code that explains how
shapes are dynamically created and assigned to objects. The corre-
sponding shape tree is visualized in Figure 5. The empty shape,
denoted by {}, always exists from the beginning. In the example,
it is used to create a new, empty object. Then, the property x with
an integer value is added to the object, triggering the creation of

var a = {};
// a’s shape is {}
a.x = 4;
// a’s shape is {x:int}
a.y = 2;
// a’s shape is {x:int , y: int}

var b = {x: "one", y: "two"};
// b’s shape is {x:String , y:String}

var c = {x: "one", y: 2};
// c’s shape is {x:String , y:int}

Figure 4: JavaScript example demonstrating the relation between
objects and shapes

(a) (b) (c)

{}

{x:int}

{x:int,
 y:int}

{x:String,
 y:String}

{x:String}

x:int x:String

y:int y:String

{x:String,
 y:int}

y:int

Figure 5: Shape tree for the JavaScript code in Figure 4

the shape {x:int}, i.e., a shape containing a property x with an
integer location, and adding it as a successor shape to {} with a
transition “x:int”. Likewise, another property y is added, adding
successor shape {x:int, y:int} to the graph. After that, another
object is created, again with properties x and y, but this time with
String values. Thus, due to different types, a new path is inserted
with the shapes {x:String} and {x:String, y:String}. Fi-
nally, another such object is created, but with a String and an in-
teger value, resulting in another shape {x:String, y:int}.

Possible transitions between shapes are:

• Add a property: change to a shape containing the new prop-
erty; if necessary, grow an extension array.

• Delete a property: change to a shape without the removed
property; if the deletion produces a gap in the storage, shift
subsequent properties to fill the gap.

• Change the attributes of a property: change to a shape with
an updated property description.

• Change the storage location of a property: change to a shape
with a modified storage location of a property, thus changing
the representation and the type of the property. This transition
may also require moving existing properties to make space or to
fill up empty space. For example, an int location may have to
be widened to a long location or may be moved to an Object
location. Subsequent storage locations need to be shifted to
accommodate for the size change. Type transitions are only
allowed to Java types that are higher up in the type hierarchy,
i.e., when a shape has a property with the type String, it cannot
make a type transition to Boolean, but it can make a transition
to Object. This is to ensure type transitions are acyclic. It also
allows migration of existing objects.

public class JSObject extends StorageObject {
// private Shape shape; // inherited

// implementation -defined number of fields
// managed by object storage model
@DynamicField private int pri1;
@DynamicField private int pri2;
@DynamicField private int pri3;
@DynamicField private int pri4;
@DynamicField private Object obj1;
@DynamicField private Object obj2;
@DynamicField private Object obj3;
@DynamicField private Object obj4;

public JSObject(Shape shape) {
super(shape);

}
}

Figure 6: Java class definition of an object storage class

• Change the object’s operations: change to a shape with differ-
ent operations. This can be used to change and instrument the
behavior of an object. For example, it can be used to intercept
accesses for debugging purposes, or to enable aspect-oriented
programming features.

4. Implementation
This section explains how the Truffle OSM is implemented in Java.

4.1 Object Storage Class
As described in the previous section, every object of the guest
language (e.g., JavaScript) is represented by a Truffle object which
is an instance of an object storage class and serves as a container
for the properties of the object obeying the semantics of the guest
language.

All object storage classes are derived from the base class
StorageObject that takes care of the object’s relation to its shape.
The language implementer defines the actual storage strategy of the
guest language by extending this class. Figure 6 shows a storage
class with four primitive fields and four object fields. Fields with
the @DynamicField annotation are automatically used to store
data. We distinguish two types of dynamic fields: object fields and
primitive fields, declared as Java fields of type Object and int,
respectively. The OSM does not allow other field types in order to
ensure absolute freedom in the allocation of locations to fields.

The object fields define an object storage area with object refer-
ences managed by the garbage collector, while the primitive fields
form a primitive storage area. The latter can be used to store values
of arbitrary primitive types, as described in Section 4.3. The size
of these areas is fixed and cannot be changed after object creation.
However, the object model can extend the two storage areas on-
demand with Object[] and int[] arrays. Additional elements not
fitting into the storage object’s fields can be stored in those exten-
sion arrays. References of those arrays are stored as object fields.
Until an extension array field is needed, its (object) field can be
used as an ordinary storage field. The object model automatically
takes care of moving conflicting entries out of the way. Overall,
this ensures that an arbitrary number of elements can be stored in
a storage object, providing fast access to fields and slightly slower
access to elements stored in extension arrays.

For a language implementer, the most crucial decision is how
many (primitive and object) fields should be provided. The more
fields are provided, the more elements can be accessed in fast

mode without further indirections via extension arrays. However,
the larger the storage object is, the more heap space is consumed
even if some guest-language objects do not use it. For instance, an
object with no elements still consumes all the heap space necessary
to allocate its storage object. The Truffle OSM does not make any
assumption on the number of fields marked with @DynamicField.
Therefore, language implementers can choose an arbitrary number.
A good number of fields can be found by empirical measurements
on a diverse set of benchmarks. How to define the ideal number of
fields is out of the scope of this paper.

4.2 Shape
A shape object represents the layout of a Truffle object, i.e., it
describes which guest-language elements are stored in which fields
of the storage object. A storage object would be called an Object in
the Java ecosystem, while a shape is equivalent to a Class in Java.
Note, however, that this terminology is different in other languages.
In JavaScript, for instance, there are no explicit classes, so a shape
in the corresponding Truffle implementation just describes which
properties an object currently has.

The shape infrastructure is automatically provided by Truffle
without any need of the language implementer to contribute to it.
Currently, a tree of nodes is created, where each node represents
one property of the guest language. This concept, known as hidden
classes, works well when the guest language program uses objects
with a reasonably low number of fixed properties. A statically typed
guest language (e.g., Java) always fulfills this requirement as it
does not dynamically add properties to its objects during execution.
Typical applications in dynamically typed languages also comply,
as their dynamically added properties usually have fixed names. In
rare cases, however, objects can have an unusually high number of
different properties and thus require large amount of shapes. An
example of this might be when a guest-language object is used as
a hash table. In such cases, the OSM implementation can decide to
store the shape information differently, e.g., as a Java HashMap.

4.3 Primitive Value Allocation Strategy
The Truffle OSM can handle objects of any size. This is achieved
by storing primitive values into dynamic object fields (i.e., fields
marked as @DynamicField), and by using the extension array
when all the dynamic fields have been used1.

If possible, primitive values are directly stored in the object
without boxing or tagging, and can be accessed without any addi-
tional indirection. Boxing and tagging are avoided by storing prim-
itives values in unboxed mode as long as their types stay monomor-
phic, i.e., by speculating on the primitive type of a value. When the
extension array is used, boxing can be avoided similarly, and only
one more indirection is needed.

All primitive fields and extension array elements are of a Java
primitive type that does not necessarily match the types of the
values stored in them. We combine consecutive slots to provide
storage for larger types, e.g., double and long values. For val-
ues larger than 4 bytes, we enforce an 8-byte alignment, because
misalignment of such values could lead to suboptimal performance
depending on the processor architecture. When attempting to store
an incompatible type in a primitive storage location, the primitive
type speculation has failed, and the object has to be reshaped, that
is, a new shape has to be assigned to it. From then on, the property
is stored in boxed mode in a storage location of reference type.

1 The extension array is stored in one of the dynamic fields like any other
Java value

4.4 Polymorphic Inline Caches
A polymorphic inline cache [12] is a common technique used to
speedup the performance of dynamically typed languages. Thanks
to inline caches, operations involving some form of dynamic bind-
ing (e.g., a dynamic property lookup) speculate on the operation
being somehow stable (e.g., reading a dynamic property always
having the same type), thus leading to a notable performance gain.

Inline caches in Truffle are implemented as nodes in the inter-
preter’s AST. To form a polymorphic inline cache, cache entries are
represented as a chain of nodes. Every cache node has one or more
guards that check whether to proceed with the specialized opera-
tion (i.e., whether the speculation is valid) or to skip over to the next
node in the chain. At the end of the node chain lies a special rewrite
node that is never compiled. When reached from within compiled
code, it immediately transfers control back to the interpreter and
invalidates the code. This cache rewrite node adds a new entry to
the cache, i.e., a new node to the chain.

For example, consider the following JavaScript expression:
obj.x. The AST interpreter represents this as a GetProperty node
with the constant argument "x" and two children: the receiver
node which evaluates the left hand side expression, obj, and a
cache node that performs the access to x using a polymorphic in-
line cache. The GetProperty node first evaluates the receiver and
then invokes the cache node with the evaluated receiver object as an
argument. Initially this cache is in the uninitialized state, as shown
in Figure 7a. When executed, it queries the object’s class and shape,
and calls the resolveGet method pertaining to the get operation to
create a specialized access node. This node is inserted to initialize
the cache to serve as a monomorphic inline cache (Figure 7b). Two
nested node chains check the Java class and the object’s shape, and
if both match, the property’s location is directly accessed. If none
of the current guarding checks in a chain succeeds, the cache miss
handler inserts a new link into the chain (Figure 7c).

Inline caching has a very positive performance impact when the
number of cache entries is small. Some access sites, however, may
have a large number of different types/shapes. In this case, the poly-
morphic inline cache would grow excessively large, slowing down
the dispatch. Furthermore, due to the fact that the AST encapsulat-
ing the inline caches is compiled as a whole, single, compilation
unit, polymorphic access sites bloat the code and can lead to fre-
quent code invalidations when the inline cache is unstable.

To address this issue a predefined limit on the number of cache
entries is used. Whenever the chain exceeds this limit on a cache
miss, the inline cache is considered megamorphic and is rewritten
to an indirect dispatch node (Figure 7d). This node loads the re-
spective operation (e.g., get or set) from the operation table in the
object’s shape and calls it.

4.5 Type Specialization
The Truffle OSM automatically specializes properties on their type.
When a new property is added, it is assigned the most suitable type.
For example, for a string value, an object location of type String is
allocated. The implementation of this location is shown in Figure 8.
It makes use of the compiler directives described in Section 4.9.1
to access the field and to cast the read value to its current type
(which can change at run time due to type specialization) without a
run-time check. On each set operation, we check whether the new
value is still of the expected type. If not, we throw an exception
that is handled by the set operation, in which case it generalizes the
location’s type to fit both the old and the new value.

For faster access, the set operation is handled by an inline cache
node that performs a guarding check on the shape and accesses the
location directly, thus omitting the costly lookup of the property. If
the location’s type check fails, we go from the compiled code back
to the interpreter, generalize the type, and rewrite the inline cache

Get Property “x”

Uninitialized Cache

Read Var “obj”receiver

cache

(a) with an uninitialized cache

Get Property “x”

Receiver Type
Guard

Receiver Type
Cache Miss

Shape Guard Direct
Get Property

Read Var “obj”

Shape Cache Miss

cache

fail

receiver

fail

pass pass

(b) with a monomorphic inline cache

Get Property “x”

Receiver Type
Guard

Receiver Type
Cache Miss

Shape Guard Direct
Get Property

Read Var “obj”

cache

fail

receiver

pass pass

Shape Guard Direct
Get Property

Shape Cache Miss

fail

pass

fail

(c) with a polymorphic inline cache

Get Property “x”

Receiver Type
Guard

Receiver Type
Cache Miss

Indirect
Get Property

Read Var “obj”

cache

fail

receiver

pass

(d) with a megamorphic cache

Figure 7: AST interpreter tree of the JavaScript expression obj.x

node to the generalized location. Figure 9 shows the implementa-
tion of the cached set operation. If the shape does not match the
expected shape of the cache entry, it probes the next cache entry, if
any. At the end of every cache node chain that forms a polymorphic
inline cache, there is a cache miss handler that is not compiled but
transfers to the interpreter and rewrites the cache.

The cached set operation may also require a shape change, for
instance to add a new property or change the type of an existing
one. The cache implementation for this case is shown in Figure 10.
We use the setWithShape method to set the value and to change the
shape in a single atomic operation in order not to leave the object
in an inconsistent state.

4.6 Inheritance
As a deliberate design decision, the Truffle OSM has no inherent
concept of inheritance, owing to the divergence of inheritance mod-
els available. Instead, the inheritance semantics is to be modelled
by language-specific extensions. Such extensions are implemented
in terms of shape operations and inline cache nodes. The Truffle

class ObjectFieldLocation implements Location {
private final long offset;
private final Class <?> type;

Object get(StorageObject obj , boolean condition) {
return unsafeCast(unsafeGetObject(obj , offset ,

condition , this)), type , condition);
}

void set(StorageObject obj , Object value)
throws IncompatibleTypeException {

if (type.isInstance(value)) {
unsafePutObject(obj , offset , value , this);

} else {
throw new IncompatibleTypeException ();

}
}

}

Figure 8: Typed object field location implementation using Truffle
compiler directives

void set(StorageObject object , Object value) {
if (shapeGuard.check(object)) {

try {
cachedLocation.set(object , value);

} catch (IncompatibleTypeException e) {
transferToInterpreterAndInvalidate ();
generalizeType(value).set(object , value);

}
} else {

nextCacheEntry.set(object , value);
}

}

Figure 9: Inline cache node implementation for a setting the value
of a cached existing property

void set(StorageObject object , Object value) {
if (oldShapeGuard.check(object)) {

try {
cachedLocation.setWithShape(object ,

value , cachedNewShape);
} catch (IncompatibleTypeException e) {

transferToInterpreterAndInvalidate ();
generalizeType(value).set(object , value);

}
} else {

nextCacheEntry.set(object , value);
}

}

Figure 10: Inline cache node implementation for a setting the value
of a property with a simultaneous shape change, for the purpose of
adding a new property or changing its location

var result;
// global ’s shape is {result:<undefined >}
result = 42;
// global ’s shape is {result:int}
result = undefined;
// global ’s shape is {result:Object}

Figure 11: Delayed initialization of global variables in JavaScript

OSM offers hidden properties to store needed data in the shape or
in an allocated object storage location.

4.7 Delayed Property Initialization
Some languages allow properties to be declared and even accessed
before they are initialized. For example, this is the case for global
variables in JavaScript, which are stored as properties of a spe-
cial builtin object called global object. The JavaScript semantics
for such properties prescribes that such properties exist with de-
fault value undefined until explicitly set. If every member were
initialized with the default value, we would not be able to do spe-
cialization of primitive values effectively. To handle this class of
cases, we create a placeholder location with the default value. As
soon as its value is initialized with the actual value, we change the
object’s shape, replacing the location with a newly allocated one.
Figure 11 shows how the Truffle JavaScript implementation han-
dles global variable declarations. Initially the property result is as-
signed a static location with the value undefined. No space is re-
served yet, as the desired representation is still unknown. When the
variable is first assigned, we allocate a new location based on the
value and perform a storage location transition. Setting an initial-
ized variable to the default value (i.e., the value returned when read-
ing an uninitialized variable, in our example the value undefined)
conducts the usual type transition.

4.8 Behavior under Memory Pressure
The total number of shapes in the system is typically small, even for
larger programs. However, pathological cases can be constructed
that allocate an excessive number of shapes. With all the meta-
data associated with shapes, this can increase the pressure on the
garbage collector and, in the worst case, eventually lead to out-of-
memory errors. To reduce the memory pressure introduced by a
large number of shapes, we take the following measures:

• The transition map uses SoftReferences for successor shapes,
so that they can be released by the garbage collector under
memory pressure.

• The properties collection in a shape is created lazily and only
when actually used. It can be reconstructed (recursively) from
the property collection of the predecessor shape by applying the
changes of the transition that lead to this shape.

• The collections used for properties and transitions use lighter
weight versions for small numbers of entries.

Moreover, the system handles extremely large objects by de-
grading to a fallback representation based on a hash table that does
not require any shapes. This is particularly convenient to handle
rare cases in which a program never stabilizes, for example in
JavaScript, where objects can be sometimes used in an unusual
way, with random entries added in a random order. This leads to
a high number of shapes with little reuse. For such usage patterns,
a simple hash table representation for properties is more efficient.
Therefore, we provide a fallback object representation that stores
all properties in a hash table.

4.9 AST Compilation
Our system is built on top of the Truffle language implementation
framework and therefore requires a Graal-enabled version of the
Java HotSpot VM to run at full speed [25]. When running on top
of this JVM, Truffle interpreters are automatically partially eval-
uated and ASTs are compiled just-in-time to optimized machine
code. Truffle can still be executed on any standard Java VM, but
without partial evaluation. Partial evaluation takes the AST of a
Truffle interpreter as the input and—acting under the assumption
that it will not change—generates specialized compiled code with-
out interpreter dispatch. Paths that change the state of the AST are
excluded from compilation and cause a transfer back to the inter-
preter. The language implementer can also mark certain branches to
be excluded from partial evaluation. This should be done for rarely
taken branches in order to generate less and thus more optimized
machine code.

4.9.1 Compiler Directives and API
The Truffle API offers a number of compiler directives to interact
with the Graal JIT Compiler, if running on a Graal-enabled Java
VM; otherwise these directives are simply ignored, leading to stan-
dard JVM behavior. Some directives are generally useful for Truf-
fle users, such as the transferToInterpreterAndInvalidate
directive, which instructs the compiler to replace subsequent code
with a jump to a deoptimization routine transfering the execution
back to the interpreter and invalidates the compiled code. It is used
to exclude parts of the code from compilation when a speculation
fails. These parts should only be executed in the interpreter.

The Truffle OSM uses additional compiler directives to opti-
mize the compiled code:

unsafeGetType loads a value or reference at the specified off-
set in the given Java object. Type is either Object or one of
the primitive Java types. This directive enhances the getType
method of the sun.misc.Unsafe class with an optional loca-
tion identity. Location identities can be used by the compiler for
alias analysis. Two storage locations cannot alias if they have
different location identities. If no location identity is provided,
aliasing is treated as unknown. This method also requires a con-
dition parameter that links the unsafe access to the condition
under which it is valid (i.e., a shape comparison). It allows the
Graal compiler to freely move the read anywhere below the con-
dition in order to do more aggressive read optimizations. This
parameter can always be false which means that the compiler
cannot move the read.

unsafePutType stores a value or reference at the specified off-
set in the given Java object. Type is either Object or one of
the primitive Java types. This directive enhances the putType
method of the sun.misc.Unsafe class with an optional loca-
tion identity.

unsafeCast casts a reference to a more specific type without a
run-time check. This directive is used to inject type information
to the compiler in order to remove unnecessary type checks
where the object storage model already guarantees that the
reference is of that type.

Furthermore, Truffle offers an API to register optimistic global
assumptions. Technically, an assumption is a global boolean flag
that is initially true and can be set to false a single time to in-
validate the assumption. During partial evaluation, the state of the
assumption is assumed stable and the assumption is registered as a
dependency of the compiled code. If subsequently the assumption
is invalidated, any dependent compiled code is automatically de-
optimized. Consequently, assumption checks have no overhead in
compiled code.

Get Property “x”

Receiver Type
Guard

Receiver Type
Cache Miss

Shape Guard Direct
Get Property

Read Var “obj”

Shape
Cache Miss

cache

fail

receiver

Prototype Stable
Assumption Checkpass

fail

Get Prototype

prototype

pass pass

Figure 12: AST interpreter tree for the monomorphic cache of the
JavaScript expression obj.x where the property is found in the
prototype and the prototype shape is stable

GetProperty

Receiver Type
Guard

Receiver Type
Cache Miss

Shape Guard Direct
Get Property

Read Var “obj”

Shape
Cache Miss

cache

fail

receiver

Prototype
Shape Guardpass

fail

Get Prototype

prototype

pass pass

Shape
Cache Miss

fail

Figure 13: AST interpreter tree for the monomorphic cache of the
JavaScript expression obj.x where the property is found in the
prototype and the prototype shape is not stable

All these directives have implementations that are fully compat-
ible with off-the-shelf Java virtual machines. While absence of the
Graal-based Truffle runtime will lead to inferior performance, the
code will stay fully functional.

5. Evaluation
We evaluate our approach focusing on two Truffle-based languages
both relying on the Truffle OSM, namely JavaScript and Ruby. We
select those two languages because of the maturity of their imple-
mentation. We measure the performance of the two engines and we
compare against state-of-the-art engines, with the aim of showing
that our Truffle-based approach achieves high peak performance.
We evaluate our JavaScript performance using the Octane bench-
mark suite [8], and our Ruby performance using common micro-
benchmarks. Since there is currently no Java implementation on
top of Truffle to evaluate, we only discuss its requirements.

5.1 JavaScript
The JavaScript object model, as defined by the ECMAScript lan-
guage specification edition 5.1 [6], requires a few extensions to be
supported by our OSM. In order to retrofit the necessary semantics,
we extend the object model by overriding the predefined operations
from Section 3.2. For that, we provide three new boolean attributes
as defined by the specification:

• configurable: denotes that the attributes of the property can be
modified and that the property can be deleted.

• writable: denotes that the property’s value can be set, otherwise
it is treated as read-only.

• enumerable: denotes that the property is to be included when
enumerating over an object’s properties (getKeys, getValues).

Additionally, we add the boolean attribute accessor to denote ac-
cessor properties, for which the get and set operations have to in-
voke the getter and setter functions stored with the property.

Furthermore, we modify the OSM operations to take inheritance
into account. JavaScript has a prototype-based inheritance model.

All objects have a hidden property that either is null or points to
the object from which it inherits, i.e., its prototype. Unless an object
has an own property with the same name, it inherits all properties of
its prototype, and recursively from the prototype’s prototype, thus
forming a prototype chain. The prototype is stored as a property
with the hidden attribute set to true. Prototypes, being just normal
objects, are mutable. Therefore, a naive implementation would po-
tentially have to walk the prototype chain on every property access.
This differs from a class-based object model with an invariant set
of members in the class hierarchy, where we know all members as
soon as we know that an object is of a particular class.

To optimize property accesses and avoid walking the prototype
chain on each access, we take the assumption that an object’s
prototype does not change. While prototypes can change, they
rarely do in practice [20]. To exploit that, we use a combination
of Truffle assumptions for checking the existence or absence of a
specific property in the relevant prototypes and assigning a static
storage location for the hidden property that stores the prototype,
thus making it constant for a particular shape. Therefore, after
checking the object’s shape, we can directly access properties in
the prototype. Only the generic method definition of the operation
that is invoked for megamorphic accesses actually walks up the
prototype chain. Figure 12 shows how we build an inline cache
for a JavaScript expression obj.x that is found in the immediate
prototype of obj. We add two additional nodes to the cache: The
first node gets the prototype from the shape and reduces to a
compile-time constant since the shape is known in the cache if
the shape guard succeeds. The second node checks whether the
property x in the prototype is stable using a Truffle assumption
registered in the shape. This assumption is invalidated when a
property with that name is removed or added to the prototype. An
additional pair of nodes is inserted for each prototype passed along
the prototype chain.

We also provide a fallback cache node for the rare case in which
the prototype’s shape is unstable. When the interpreter detects that
the prototype is mutated, it invalidates the stable assumption and
modifies the inline cache as depicted in Figure 13. Instead of the
assumption check a normal shape check is done on the prototype.
This shape check can again become polymorphic, i.e., if a new
shape is encountered, it is added to the polymorphic dispatch chain.

5.2 Ruby
The Ruby object instance variable model is simpler than that of
JavaScript. Objects logically contain a set of mappings from a
string identifier to an object value. Instance variables are not de-
clared before they are first set, and missing instance variables return
the nil object, with no distinction being made between missing in-
stance variables and those explicitly being set to nil. Different ob-
jects of the same class may have different sets of instance variables.
Ruby does have explicit class declarations, similar to Python, and
has a complex set of rules for class inheritance and method lookup,
but this is not relevant for the implementation of instance variables
as methods live in a different namespace. Finally, instance variables
in Ruby are uniform without access modifiers or overloading as for
example in the case of JavaScript’s length property.

This means that the implementation of Ruby’s instance vari-
ables using the OSM was straightforward. Objects are allocated
with an empty shape and instance variables are added as proper-
ties on their first assignment. As in JavaScript, each source location
where a property is read or written has an inline cache, with each
entry in the cache specialized for a particular shape and storage
location.

5.3 Towards Implementing Java
Our object storage model can also be used for implementing
statically-typed languages. A Java implementation on top of Truffle
(which is future work) can use the OSM for modeling instances of
arbitrary Java classes. While such an implementation could use
vanilla Java classes also for guest-language objects, emulating
these classes with our storage model allows for specialized object
formats that go beyond the Java language specification. For exam-
ple, we could provide specialized representations of parametrized
types, e.g., a HashMap<String, double> with String-typed keys
(despite type erasure) and unboxed double values.

Java fields can be represented in the OSM as properties with
additional attributes for access modifiers (private, protected, . . .)
and annotations. Non-access modifiers (static, final, volatile) can
be modelled with corresponding storage locations. Finally, class
metadata as well as method definitions can be stored as part of
the shared data section in the shape. One caveat with using the
OSM for languages that support multithreading is that we currently
do not provide any guarantees about the thread-safety of shape
transitions. However, since the fields of a class do not change after
object creation, transitions are not required to implement Java as a
guest language.

5.4 Performance
The benchmarks were run on an Intel Core i7-4850HQ quad-core
processor at 2.3 GHz and 16 GB of RAM. We measured peak
performance, i.e., a warmup phase preceeded each measurement
to ensure a stable and comparable score.

Figure 14 and Figure 16 shows benchmark scores of our
JavaScript and Ruby implementations with the following config-
urations of the OSM:

NoOpt OSM objects contain only properties of type Object with-
out any type specialization. Primitive values are always stored
as boxed objects. Still, inline caching is performed on the ob-
ject’s shape in order to specialize property accesses.

Types Properties have type information attached. Values are al-
ways boxed.

Unbox No type information is attached to properties with a refer-
ence type. Values are stored in unboxed mode in the primitive
storage area.

Types+Unbox All features are enabled. Properties with a reference
type have type information attached. Where possible, values are
stored in unboxed mode in the primitive storage area.

Hash In the Ruby implementation we also compared against a
fallback HashTable implementation of instance variables.

5.4.1 JavaScript
In Figure 14, we compare the aforementioned configurations of
the OSM on the Octane benchmark suite version 2.0 [8]. We have
excluded the benchmarks RegExp and CodeLoad as they are testing
only aspects unrelated to the OSM, namely regular expression
matching and JavaScript library loading speed, respectively.

Type specialization of locations with a reference type alone
achieves a minor speedup with up to 9% on the RayTrace bench-
mark. Primitive type specialization, i.e., storing values in unboxed
mode, achieves a much higher speedup, namely up to 2× on the
Box2D benchmark. Notable improvements can also be seen on
RayTrace (57%), Richards (38%), DeltaBlue (26%), and Splay
(26%). Finally, combining those two optimizations shows that these
speedups accumulate, with up to 2.4× on Box2D. Some of the
benchmarks do not benefit at all from the optimizations in our
OSM. These benchmarks mostly work on arrays or strings and
therefore do not profit from fast object access.

0 0.5 1 1.5 2 2.5

zlib

Typescript

PdfJS

Mandreel

Gameboy

Box2D

EarleyBoyer

Splay

NavierStokes

RayTrace

Crypto

DeltaBlue

Richards

NoOpt Types Unbox Types+Unbox

Figure 14: JavaScript Octane benchmark score comparison with
different storage configurations, normalized to the NoOpt config-
uration

Figure 15 shows a comparison of our Truffle JavaScript imple-
mentation against recent versions of V8 [9], SpiderMonkey [17],
and Nashorn [19] as included in JDK 8u5. All engines feature a
SELF-like map system for faster property access. V8 and Spider-
Monkey are VMs written in C++ and optimized specifically for
JavaScript and use tagging as a means to avoid the overhead of
storing values as boxed objects. Recent V8 versions also have some
type information in maps that allow the compiler to skip tag checks
(values are still tagged). Nashorn, since it is based on Java, does
not use tagging but instead boxes all values. This has a negative
impact on object-oriented benchmarks that perform a lot of nu-
meric computations, as can be seen with the RayTrace and Box2D
benchmarks. Our implementation always attempts to store values
unboxed (and untagged) and only boxes values if their type is poly-
morphic. Despite the fact that Truffle JavaScript runs on a general-
purpose VM (the JVM), aggressive optimizations allow us to be
competitive in terms of performance with special-purpose VMs.

5.4.2 Ruby
Figure 17 shows a comparison of our Truffle Ruby implementation
against the latest versions of MRI, Rubinius, JRuby and a nightly
build of Topaz2. The original implementation of Ruby, written
in C and known as MRI or CRuby, is a conventional bytecode
interpreter. It stores instance variables in a hash table of names to
an index in an array stored in each object. The index is cached after

2 available at: http://ruby-lang.org/, http://rubini.us/, http://jruby.org/, and
http://topazruby.com/

0 0.5 1 1.5 2 2.5 3 3.5 4

zlib

Typescript

PdfJS

Mandreel

Gameboy

Box2D

EarleyBoyer

Splay

NavierStokes

RayTrace

Crypto

DeltaBlue

Richards

TruffleJS SpiderMonkey V8 NashornJDK8

Figure 15: Octane benchmark score comparison against other
JavaScript engines

first lookup and stored alongside bytecode instructions. The cache
is verified with an explicit check against a version number stored in
the receiver’s class.

Rubinius is Ruby implemented with a VM core in C++ and us-
ing LLVM as a JIT compiler, but with much of the Ruby specific
functionality implemented in Ruby. It stores instance variables that
are statically known at parse time in fields within the object, but
uses a hash table to store dynamically set instance variables. This
results in drastically different performance depending on whether
or not an instance variable happens to be visible to the parser –
a modified version of the n-body benchmark where instance vari-
ables are hidden from the parser by mixing them in from a sepa-
rate module after allocation performs at half speed in Rubinius. As
Truffle does not try to guess instance variables using the parser, hid-
ing them makes no difference to our performance and the modified
version of n-body runs at the same speed.

JRuby is a conventional bytecode generating JVM implemen-
tation of Ruby, which our Truffle implementation extends upon. It
uses the invokedynamic instruction, but not to the extent which
Nashorn does. JRuby stores instance variables in a similar way to
MRI, with variables stored boxed in an object array in each object
with the index looked up in a hash map. As in MRI, an inline cache
of the index lookup is guarded by the class version number. JRuby
has experimental support for the same technique as Rubinius for
statically allocating fields for instance variables, but we were not
able to get it to work with our modified n-body.

Topaz is an implementation of Ruby using the RPython toolchain,
as used to implement PyPy. Topaz is implemented in a restricted
subset of Python and translated ahead of time to C. At runtime, a

http://ruby-lang.org/
http://rubini.us/
http://jruby.org/
http://topazruby.com/

0 0.5 1 1.5 2 2.5 3 3.5

n-body

neural-net

richards

deltablue

Hash NoOpt Types Unbox Types+Unbox

Figure 16: Ruby benchmark score comparison with different stor-
age configurations, normalized to the NoOpt configuration

0 5 10 15 20 25 30 35 40

n-body

neural-net

richards

deltablue

Truffle Topaz JRuby Rubinius MRI

Figure 17: Benchmark score comparison against other Ruby en-
gines, normalized to MRI

metatracing JIT traces execution of the interpreter and emits ma-
chine code. Topaz stores instance variables using a map of names to
an index in separate arrays for objects and unboxed values, stored
in each object. Unlike MRI where the map is a simple hash table,
in Topaz it is a data structure similar to our shape, with transitions
as variables are added. Topaz was not able to run the deltablue
benchmark.

6. Related Work
Cross-language interoperability presents many challenges [4] span-
ning from memory layout compatibility, differences in the object
model and the memory model, and differences in the model of par-
allelism to be supported. All such challenges can be found either
when attempting to integrate two distinct language runtimes (e.g.,
Smalltalk and C [3]) or when languages share the same runtime
(e.g., the JVM). Most of the research in the latter domain has been
conducted addressing the issues arising from the sharing of core
VM components such as the JIT compiler. For instance, it is very
common that a JIT compiler designed to target a statically typed
language has been modified in order to target also dynamic lan-
guages [1, 14]. The Truffle framework and its core JIT compiler,
Graal [25], can be considered as a flexible platform for reusing core
VM components such as the JIT compiler and the garbage collector.
A distinguishing difference with existing approaches is that core
VM components are offered to the Truffle language implementer

in the form of compiler directives and APIs that are known to the
runtime. The storage model described in this paper is one such core
component available for language implementers to be used when
developing a language execution engine. Other real-world exam-
ples of cross-language interoperability also exist in the context of
the .NET common language runtime (CLR), where language im-
plementers are required to adopt the same common object model
for all languages [16]. The .NET object model comes with sup-
port for dynamically extensible objects by means of a shared API3,
and differs significantly from the Truffle approach, since develop-
ers must rely on a fixed, not extensible, set of APIs. Moreover, the
Truffle OSM is designed to target Truffle AST interpreters, offer-
ing opportunities for optimization. Conversely, languages willing
to support different semantics in .NET need to choose between em-
ulating them on top of what the .NET platform offers or creating a
dialect of the guest language.

An approach that is an alternative to extending existing runtimes
for supporting multiple languages is represented by the VMKit
project [7]. VMKit provides developers with reusable core VM
components that can be glued together in order to obtain a managed
language runtime by means of component reuse and composition.
The VMKit approach differs from the Truffle approach in that the
framework does not offer the language implementer any means
for specializing the language runtime to the characteristics of a
specific target language (e.g., by means of specialization and partial
evaluation) or to reuse an object storage model. Rather, the object
model design and implementation is left to the developer who has
to take care of all the implementation aspects.

Regardless of cross-language interoperability, managed run-
times already feature optimization techniques such as polymorphic
inline caches, which were first introduced in the SELF language
runtime [2, 22]. We embrace the effectiveness of polymorphic in-
line caches and build on the SELF approach by providing an object
model that can be used for implementing reusable inline caches
applicable in the context of multiple languages. As we have shown,
inline caches for different languages such as JavaScript and Ruby
can be implemented with our OSM relying on the same mecha-
nisms and still offering acceptable performance.

7. Future Work

While the Truffle Framework is already adopted by several lan-
guage implementation efforts, it is still under active development.
The Truffle object storage model presented in this paper addresses
a core aspect of Truffle with the goal of providing a powerful way
for language developers to implement high-performance language
runtimes. To further increase and improve the languages running on
the Truffle platform, we foresee the following research directions:

Language Support We claim that our OSM is generic enough to
be used for a wide selection of Truffle language implementa-
tions. Future work should prove that this is indeed the case
through increased adoption by applying our OSM to even more
language implementations, also of different classes.

Thread Safety If the shape of an object does not change, our
object model is already thread-safe in the sense of the Java
Memory Model [15]. Thus, it can be used to safely imple-
ment languages with fixed object formats (such as Java) in a
multi-threaded environment. Ensuring thread safety also across
format-changing shape transitions is left as future work.

3 The API includes built-in functions for dynamically changing
the size of an object such as ExpandoObject, DynamicObject,
DynamicMetaObject, IDynamicMetaObjectProvider.

Value Types The primitive storage in our system could be used to
efficiently store value types (e.g., complex numbers) without
the need of wrappers, even if those are not supported by Java.
We plan to demonstrate this in a future project.

Reducing Polymorphism Sometimes, overly precise type and
representation specialization can lead to an increase in types.
If two shapes contain the same members (but differ in their
types), they can be merged and their member types can be gen-
eralized to a common base type. This would reduce the number
of shapes in the system.

Cross-Language Interoperability We think that the shared Truf-
fle infrastructure provides a solid basis for executing multi-
language programs with interoperability across language bound-
aries. In future work we will investigate non-intrusive and effi-
cient ways to achieve this goal [11].

8. Conclusions
In this paper we introduced and evaluated Truffle OSM, a new,
high-performance, object storage model for the Truffle language
implementation framework. Truffle OSM defines a sophisticated
memory layout for objects that can have varying shapes together
with the necessary operations for accessing the members of these
objects efficiently. Our approach is suitable for very efficient com-
pilation, as it is based on type specialization and partial evaluation,
allowing for optimizations such as polymorphic inline caches for
efficient dynamic property lookup.

Given the heterogeneity of programming languages, there is no
one-fits-all solution to the problem of providing language imple-
menters with generic reusable components. Still, we believe that
our one-fits-many approach is very convenient for language im-
plementers, as it focuses on widely useful features rather than on
language-specific ones.

Moreover, we believe that our approach encourages the usage of
Truffle, as the Truffle OSM API allows the compiler reuse many ag-
gressive optimizations for all the new Truffle languages that might
rely on it. Future optimizations will therefore automatically bene-
fit all users. Our performance evaluation shows that even though
Truffle-based guest-language runtimes build on top of a general-
purpose host VM, they can achieve performance competitive to that
of a special-purpose VM designed for a specific dynamic program-
ming language.

Acknowledgments
We thank all members of the Virtual Machine Research Group at
Oracle Labs, as well as the Institute for System Software at the Jo-
hannes Kepler University Linz, for their support and contributions.

Oracle, Java, and HotSpot are trademarks or registered trade-
marks of Oracle and/or its affiliates. Other names may be trade-
marks of their respective owners.

References
[1] J. Castanos, D. Edelsohn, K. Ishizaki, P. Nagpurkar, T. Nakatani,

T. Ogasawara, and P. Wu. On the benefits and pitfalls of extend-
ing a statically typed language JIT compiler for dynamic scripting
languages. In Proceedings of the ACM International Conference on
Object Oriented Programming Systems Languages and Applications,
pages 195–212, 2012.

[2] C. Chambers, D. Ungar, and E. Lee. An efficient implementation of
SELF, a dynamically-typed object-oriented language based on proto-
types. In Proceedings of the ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages, and Applications, pages
49–70. ACM Press, 1989.

[3] D. Chisnall. Smalltalk in a C world. In Proceedings of the Interna-
tional Workshop on Smalltalk Technologies, pages 4:1–4:12, 2012.

[4] D. Chisnall. The challenge of cross-language interoperability. Queue,
11(10):20:20–20:28, Oct. 2013.

[5] G. Duboscq, T. Würthinger, L. Stadler, C. Wimmer, D. Simon, and
H. Mössenböck. An intermediate representation for speculative opti-
mizations in a dynamic compiler. 2013.

[6] ECMA International. Standard ECMA-262 - ECMAScript Language
Specification. 5.1 edition, June 2011.

[7] N. Geoffray, G. Thomas, J. Lawall, G. Muller, and B. Folliot. VMKit:
A substrate for managed runtime environments. In Proceedings of the
International Conference on Virtual Execution Environments, pages
51–62, 2010.

[8] Google. Octane benchmark suite, 2014. URL https://developers.
google.com/octane/.

[9] Google. V8 JavaScript engine, 2014. URL http://code.google.com/p/
v8/.

[10] J. Gosling, B. Joy, G. Steele, and G. Bracha. Java Language Specifi-
cation, Third Edition. Addison-Wesley Professional, 2005.

[11] M. Grimmer, T. Würthinger, A. Wöß, and H. Mössenböck. An effi-
cient approach for accessing C data structures from JavaScript. In Pro-
ceedings of the Workshop on the Implementation, Compilation, Opti-
mization of Object-Oriented Languages and Programming Systems.
ACM Press, 2014.

[12] U. Hölzle, C. Chambers, and D. Ungar. Optimizing dynamically-typed
object-oriented languages with polymorphic inline caches. In Pro-
ceedings of the European Conference on Object-Oriented Program-
ming, pages 21–38. Springer-Verlag, 1991.

[13] U. Hölzle, C. Chambers, and D. Ungar. Debugging optimized code
with dynamic deoptimization. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation,
pages 32–43. ACM Press, 1992.

[14] K. Ishizaki, T. Ogasawara, J. Castanos, P. Nagpurkar, D. Edelsohn,
and T. Nakatani. Adding dynamically-typed language support to a
statically-typed language compiler: Performance evaluation, analysis,
and tradeoffs. In Proceedings of the International Conference on
Virtual Execution Environments, pages 169–180, 2012.

[15] J. Manson, W. Pugh, and S. V. Adve. The Java memory model.
In Proceedings of the ACM SIGPLAN Symposium on Principles of
Programming Languages, pages 378–391, 2005.

[16] E. Meijer and J. Gough. Technical Overview of the Common Lan-
guage Runtime. Technical report, 2000.

[17] Mozilla Foundation. Spidermonkey JavaScript engine, 2014. URL
http://developer.mozilla.org/en/SpiderMonkey.

[18] OpenJDK Community. Graal project, 2014. URL http://openjdk.java.
net/projects/graal/.

[19] OpenJDK Community. Nashorn project, 2014. URL http://openjdk.
java.net/projects/nashorn/.

[20] G. Richards, S. Lebresne, B. Burg, and J. Vitek. An analysis of the
dynamic behavior of JavaScript programs. In Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 1–12. ACM Press, 2010.

[21] L. Stadler, T. Würthinger, and H. Mössenböck. Partial escape analysis
and scalar replacement for Java. In Proceedings of the International
Symposium on Code Generation and Optimization, pages 165–174.
ACM Press, 2014.

[22] D. Ungar and R. B. Smith. Self: The power of simplicity. In Proceed-
ings of the ACM SIGPLAN Conference on Object-Oriented Program-
ming Systems, Languages, and Applications, pages 227–242, 1987.

[23] T. Van Cutsem and M. S. Miller. Proxies: Design principles for robust
object-oriented intercession APIs. In Proceedings of the Dynamic
Languages Symposium, pages 59–72, 2010.

[24] T. Würthinger, A. Wöß, L. Stadler, G. Duboscq, D. Simon, and
C. Wimmer. Self-optimizing AST interpreters. In Proceedings of the
Dynamic Languages Symposium, 2012.

[25] T. Würthinger, C. Wimmer, A. Wöß, L. Stadler, G. Duboscq,
C. Humer, G. Richards, D. Simon, and M. Wolczko. One VM to rule
them all. In Proceedings of Onward!, 2013.

https://developers.google.com/octane/
https://developers.google.com/octane/
http://code.google.com/p/v8/
http://code.google.com/p/v8/
http://developer.mozilla.org/en/SpiderMonkey
http://openjdk.java.net/projects/graal/
http://openjdk.java.net/projects/graal/
http://openjdk.java.net/projects/nashorn/
http://openjdk.java.net/projects/nashorn/

	Introduction
	Background
	The Truffle Framework Overview

	The Truffle Object Storage Model
	Object Layout
	Operations
	Components of the Truffle OSM
	Storage locations
	Shape Transitions

	Implementation
	Object Storage Class
	Shape
	Primitive Value Allocation Strategy
	Polymorphic Inline Caches
	Type Specialization
	Inheritance
	Delayed Property Initialization
	Behavior under Memory Pressure
	AST Compilation
	Compiler Directives and API

	Evaluation
	JavaScript
	Ruby
	Towards Implementing Java
	Performance
	JavaScript
	Ruby

	Related Work
	Future Work
	Conclusions

